Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → FROM(proper(X))
ACTIVE(from(X)) → FROM(s(X))
FIRST(X1, mark(X2)) → FIRST(X1, X2)
ACTIVE(first(s(X), cons(Y, Z))) → FIRST(X, Z)
TOP(mark(X)) → PROPER(X)
ACTIVE(from(X)) → FROM(active(X))
PROPER(first(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → PROPER(X2)
FIRST(mark(X1), X2) → FIRST(X1, X2)
S(mark(X)) → S(X)
ACTIVE(first(X1, X2)) → FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) → ACTIVE(X2)
ACTIVE(first(X1, X2)) → ACTIVE(X1)
ACTIVE(first(X1, X2)) → FIRST(active(X1), X2)
TOP(mark(X)) → TOP(proper(X))
PROPER(s(X)) → S(proper(X))
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(first(s(X), cons(Y, Z))) → CONS(Y, first(X, Z))
ACTIVE(from(X)) → CONS(X, from(s(X)))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → FIRST(proper(X1), proper(X2))
TOP(ok(X)) → ACTIVE(X)
FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)
ACTIVE(from(X)) → S(X)
ACTIVE(s(X)) → S(active(X))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(s(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
PROPER(from(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(from(X)) → ACTIVE(X)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → FROM(proper(X))
ACTIVE(from(X)) → FROM(s(X))
FIRST(X1, mark(X2)) → FIRST(X1, X2)
ACTIVE(first(s(X), cons(Y, Z))) → FIRST(X, Z)
TOP(mark(X)) → PROPER(X)
ACTIVE(from(X)) → FROM(active(X))
PROPER(first(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → PROPER(X2)
FIRST(mark(X1), X2) → FIRST(X1, X2)
S(mark(X)) → S(X)
ACTIVE(first(X1, X2)) → FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) → ACTIVE(X2)
ACTIVE(first(X1, X2)) → ACTIVE(X1)
ACTIVE(first(X1, X2)) → FIRST(active(X1), X2)
TOP(mark(X)) → TOP(proper(X))
PROPER(s(X)) → S(proper(X))
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(first(s(X), cons(Y, Z))) → CONS(Y, first(X, Z))
ACTIVE(from(X)) → CONS(X, from(s(X)))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → FIRST(proper(X1), proper(X2))
TOP(ok(X)) → ACTIVE(X)
FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)
ACTIVE(from(X)) → S(X)
ACTIVE(s(X)) → S(active(X))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(s(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
PROPER(from(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(from(X)) → ACTIVE(X)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FIRST(X1, mark(X2)) → FIRST(X1, X2)
ACTIVE(from(X)) → FROM(s(X))
PROPER(from(X)) → FROM(proper(X))
ACTIVE(first(s(X), cons(Y, Z))) → FIRST(X, Z)
TOP(mark(X)) → PROPER(X)
PROPER(first(X1, X2)) → PROPER(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(first(X1, X2)) → PROPER(X2)
S(mark(X)) → S(X)
FIRST(mark(X1), X2) → FIRST(X1, X2)
ACTIVE(first(X1, X2)) → FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) → ACTIVE(X2)
ACTIVE(first(X1, X2)) → ACTIVE(X1)
ACTIVE(first(X1, X2)) → FIRST(active(X1), X2)
PROPER(s(X)) → S(proper(X))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(first(s(X), cons(Y, Z))) → CONS(Y, first(X, Z))
ACTIVE(s(X)) → ACTIVE(X)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → FIRST(proper(X1), proper(X2))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(from(X)) → S(X)
FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(from(X)) → ACTIVE(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 7 SCCs with 16 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.

FROM(ok(X)) → FROM(X)
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  FROM(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [2].
Precedence:
mark1 > FROM1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FROM(ok(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)

Recursive Path Order [2].
Precedence:
ok1 > CONS1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.

S(mark(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [2].
Precedence:
ok1 > S1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIRST(X1, mark(X2)) → FIRST(X1, X2)
FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)
FIRST(mark(X1), X2) → FIRST(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST(X1, mark(X2)) → FIRST(X1, X2)
FIRST(mark(X1), X2) → FIRST(X1, X2)
The remaining pairs can at least be oriented weakly.

FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)
Used ordering: Combined order from the following AFS and order.
FIRST(x1, x2)  =  FIRST(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [2].
Precedence:
mark1 > FIRST2

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST(ok(X1), ok(X2)) → FIRST(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FIRST(x1, x2)  =  FIRST(x2)
ok(x1)  =  ok(x1)

Recursive Path Order [2].
Precedence:
ok1 > FIRST1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(first(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(first(X1, X2)) → PROPER(X1)
PROPER(first(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.

PROPER(from(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
from(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
first(x1, x2)  =  first(x1, x2)

Recursive Path Order [2].
Precedence:
cons2 > PROPER1
first2 > PROPER1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → PROPER(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(from(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
from(x1)  =  from(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(first(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(first(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(first(X1, X2)) → ACTIVE(X2)
ACTIVE(first(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
first(x1, x2)  =  first(x1, x2)
cons(x1, x2)  =  x1
from(x1)  =  x1
s(x1)  =  x1

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  cons(x1, x2)
from(x1)  =  x1
s(x1)  =  x1

Recursive Path Order [2].
Precedence:
cons2 > ACTIVE1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(from(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
from(x1)  =  from(x1)
s(x1)  =  x1

Recursive Path Order [2].
Precedence:
from1 > ACTIVE1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.

TOP(ok(X)) → TOP(active(X))
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
from(x1)  =  from(x1)
s(x1)  =  s(x1)
0  =  0
cons(x1, x2)  =  cons(x1)
first(x1, x2)  =  first(x1, x2)
nil  =  nil

Recursive Path Order [2].
Precedence:
from1 > cons1 > mark1
s1 > cons1 > mark1
s1 > first2 > mark1
0 > mark1
0 > nil

The following usable rules [14] were oriented:

from(ok(X)) → ok(from(X))
active(s(X)) → s(active(X))
s(mark(X)) → mark(s(X))
proper(0) → ok(0)
proper(from(X)) → from(proper(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
first(mark(X1), X2) → mark(first(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(first(X1, X2)) → first(X1, active(X2))
proper(nil) → ok(nil)
from(mark(X)) → mark(from(X))
active(from(X)) → from(active(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
proper(s(X)) → s(proper(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(first(X1, X2)) → first(active(X1), X2)
first(ok(X1), ok(X2)) → ok(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
active(first(0, X)) → mark(nil)
proper(first(X1, X2)) → first(proper(X1), proper(X2))
active(from(X)) → mark(cons(X, from(s(X))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
from(x1)  =  x1
s(x1)  =  s(x1)
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
first(x1, x2)  =  x2
0  =  0
nil  =  nil

Recursive Path Order [2].
Precedence:
TOP1 > mark
s1 > ok1 > mark
cons2 > ok1 > mark
0 > mark
nil > mark

The following usable rules [14] were oriented:

from(ok(X)) → ok(from(X))
active(s(X)) → s(active(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
first(mark(X1), X2) → mark(first(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(first(X1, X2)) → first(X1, active(X2))
from(mark(X)) → mark(from(X))
active(from(X)) → from(active(X))
s(ok(X)) → ok(s(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(first(X1, X2)) → first(active(X1), X2)
first(ok(X1), ok(X2)) → ok(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
active(first(0, X)) → mark(nil)
active(from(X)) → mark(cons(X, from(s(X))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.